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Abstract. Simulation now plays an important role in the development
of autonomous driving algorithms as it can significantly reduce the eco-
nomical cost and ethical risk of real-world testing. However, building a
high-quality driving simulator is not trivial as it calls for realistic in-
teractive behaviors of road agents. Recently, several simulators employ
interactive trajectory prediction models learnt in a data-driven manner.
While they are successful in generating short-term interactive scenarios,
the simulator quickly breaks down when the time horizon gets longer.
We identify the reason behind: existing interactive trajectory predictors
suffer from the out-of-domain (OOD) problem when recursively feeding
predictions as the input back to the model. To this end, we propose to
introduce a tailored model predictive control (MPC) module as a res-
cue into the state-of-the art interactive trajectory prediction model M2I,
forming a new simulator named M2Sim. Notably, M2Sim can effectively
address the OOD problem of long-term simulation by enforcing a flexi-
ble regularization that admits the replayed data, while still enjoying the
diversity of data-driven predictions. We demonstrate the superiority of
M2Sim using both quantitative results and visualizations and release our
data, code and models: https://github.com/0nhc/m2sim.
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1 Introduction

Autonomous driving [1–5] is one of the most important AI applications nowa-
days. Collecting data for dangerous driving scenarios is challenging, making sim-
ulation the preferred choice for algorithm development. Thus, building a high-
quality driving simulator with realistic interactive behaviors is crucial.

Fig. 1-a shows a replayed data clip at an intersection, where the red line
represents the future trajectory of a chosen ego car. Fig. 1-b demonstrates the
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drawback of a non-interactive simulator. The ego car, controlled by a to-be-tested
algorithm, collides with other cars following the replayed data.

To address this issue, recent works integrate interactive trajectory predictors
[6–9], using neural networks to capture the diverse distribution of real-world
interactive trajectories. However, they encounter the out-of-distribution (OOD)
[10] problem in long-term simulation due to their recursive nature [11]. As shown
in Fig. 1-c, this leads to the unrealistic long-term simulation.

To alleviate the OOD issue, we propose using model predictive control (MPC)
[12–17] as a rescue mechanism (Fig. 1-d). This module introduces the replayed
trajectory as a flexible regularization term. And the interactive trajectory pre-
dictor outputs serve as another fundamental regularization term, which offers
diversity to the system. Other tailored add-ons like control effort and smooth-
ness terms make the behavior of our agents more realistic.

In one word, the contribution of this study is a simulation system combin-
ing the advantages of data-driven interactive trajectory predictors and a tailored
model predictive controller. To the best of our knowledge, M2Sim is the first sys-
tem that demonstrates realistic long-term interactive driving simulation results
in the literature.

(a) Data Replay (b) Collision in Non-interactive Simulation

(c) Unrealistic Long-term Interactive Simulation (d) MPC to the Rescue

Fig. 1. (a) Data replay. (b) Collisions happen in a non-interactive simulator. (c) Other
cars react according to a learned model. In the long term, their trajectories become
unrealistic. (d) We leverage MPC to address the OOD issue in (c).

2 Related Work

2.1 Interactive Trajectory Prediction

For interactive trajectory prediction, some works utilize graph neural networks
to learn the interaction relationship between different vehicles [18,19], and other
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works use the attention in transformer to model the interaction relationship
between vehicles [20, 21]. M2I [7], which is the engine of choice in our simula-
tor for its state-of-the-art performance, uses both rasterized map representation
and polyline representation, and integrates graph neural network and attention
mechanism for interactive prediction. Since it utilizes future trajectories of the
ego vehicle, it has good prediction accuracy and high computational efficiency.
However learning-based approaches lack interpretability and may break specific
physical constraints. What’s worse, their behaviors become unpredictable and
unreliable when the time horizon gets long.

2.2 Traffic Simulation

As for simulating interactive behaviors, autonomous driving simulators such as
SUMO [22], CityFlow [23], CommonRoad [24] focus on multi-agent traffic flow
simulation, but due to the lack of realistic traffic data, they cannot simulate traf-
fic flow with interactive behaviors. Recently some works such as TrafficSim [25],
SimNet [26], etc. learn from data collected in real world to model interactive
multi-agent behaviors. These approaches only learn from all the agents’ past be-
haviors at once, without considering their future interactions. InterSim [27] sim-
plifies the prediction of future interactions into a binary classification problem,
which has better interpretability on relationship prediciton and higher computa-
tional efficiency than counterparts using latent-variable [25] or cost functions [28]
for to model future collisions. However when we test these learning-based ap-
proaches, we found them quickly breaking down when the time horizon of traffic
scenarios gets longer, which is caused by the out-of-domain(OOD) problem [10].

3 Method

3.1 Overview

As shown in Fig. 2, our simulator M2Sim addresses the OOD problem by in-
tegrating an MPC module with a data-driven interactive trajectory predictor.
Here, we choose the state-of-the-art predictor M2I [7]. In the MPC formulation,
we add both M2I’s output trajectories and ground truth trajectories (explained
later) to the optimization problem as constraints, which enforces a flexible regu-
larization that admits the replayed ground truth while still enjoying the diversity
of data-driven predictions.

3.2 M2I

As shown in Fig. 3, the trajectory predictor has three modules: relation pre-
dictor, marginal trajectory predictor, and conditional trajectory predictor. The
relation predictor predicts whether each road agent will be an influencer (and
yield), a reactor (and be yielded), or neither. Then the marginal trajectory pre-
dictor of it predicts the future 8 seconds of trajectories of all road agents without
considering their potential interactions. Finally, with the predicted relations and
marginal trajectories, its conditional trajectory predictor modifies the trajecto-
ries of reactors to account for their interactions with influencers.
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Short-term (6s) Mid-term (12s) Long-term (18s)

ITP

MPC module MPC module MPC module

ITP

ITP : Interactive Trajectory Predictor (recursively) : 𝑀2𝑆𝑖𝑚: 𝑀1𝑆𝑖𝑚

Fig. 2. The structure of M2Sim. M1Sim (M2I without the MPC module), denoted
by the flow of pink arrows, can produce reasonable results in the short term, but its
behaviors become unrealistic in the long term due to recursively feeding predictions
into the model. As shown in the enlarged pink box, agents form a cluster in the long
term. However M2Sim (M2I with the MPC module), denoted by the flow of blue arrows,
addresses the OOD problem by integrating the MPCmodule. Note that we conceptually
use the same image to present recursively predicted results in red boxes, which are
actually different for M1Sim and M2Sim.

Conditional 
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Predictor
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Predictor
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Fig. 3. A brief recap of the structure of M2I, which is our data-driven interactive
trajectory prediction engine. It ourputs several trajectories with confidence values, so
that we can randomly sample from them to generate diverse trajectories.
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In addition to the three modules for predicting relations and trajectories,
it laso has a module for selecting trajectories. Specifically, for N single vehicle
trajectories, we have N2 pairs of interactions. The sample selector outputs the
top K out of the N2 pairs based on the ranking of confidence scores. We can
generate diverse trajectories with interactive trajectory predictor by selecting
trajectories randomly according to the confidence values.

The interactive trajectory predictor takes 1.1 seconds of past trajectories and
predicts 8 seconds of future trajectories (represented as a set of coordinates x, y).
By differential operation, we can get yaw and v from discrete coordinates x, y
of future trajectories. The final output trajectory can be described as zref =
[x, y, yaw, v] denoting [coordinate x, coordinate y, heading angle, speed].

3.3 MPC

As shown in Fig. 4, we design an MPC controller considering both M2I’s output
trajectories and ground truth trajectories as constraints for the optimization
problem. In addition, MPC comes with a kinematic model, which also functions
as a constraint and ensures the physical plausibility of its output trajectories.

We denote an autonomous vehicle(AV)’s state of [coordinate x, coordinate y,
heading angle, speed] by z(τ) = [x(τ), y(τ), yaw(τ), v(τ)], and its control input of
[acceleration, steering angle] by u(τ) = [a(τ), δ(τ)]. Then we denote the predic-
tion horizon by Tp ∈ N. Thus, the problem can be defined as solving the optimal
control input u(τ) = [a(τ), δ(τ)] at specific time τ . Our MPC formulations are
as follows:

: Original Trajectory

: M2I Trajectory

: MPC Trajectory

: MPC Constraints

: MPC Constraints

Possible Collision

Fig. 4. The MPC module considers both the original replay trajectory and the pre-
dicted interactive trajectory as constraints to the optimization problem.

Optimization Problem Setup At time τ , we denote control inputs of U(τ) ∈
Ub ⊂ R2TP and corresponding states of Z(τ) ∈ Zb ⊂ R4Tp :

U(τ) = [u(τ), ..., u(τ + Tp − 1)]T , Ub = [umin, umax]

Z(τ) = [z(τ + 1), ..., z(τ + Tp)]
T , Zb = [zmin, zmax]



6 H. Zhengxiao et al.

Our MPC module considers both M2I’s output trajectories and ground truth
trajectories as inputs, while taking smoothness and control efforts into account.
Let ∥·∥denotes Euclidean Norm, we design the following cost function J(Z(τ), U(τ)):

J =

τ+Tp∑
t=τ+1

λz1∥z(t)− zref1(t)∥2 +
τ+Tp∑
t=τ+1

λz2∥z(t)− zref2(t)∥2 (State Error)

+

τ+Tp−1∑
t=τ

λu∥u(t)∥2 (Control Effort)

+

τ+Tp−1∑
t=τ

λ∆u∥u(t)− u(t− 1)∥2, (Smoothness)

where zref1 and zref2 denotes trajectories provided by M2I and ground truth
trajectories respectively, and all λ denotes constant values corresponding to their
weights in the cost function.

Thus, the optimization problem can be defined as solving:

U∗ ≜ arg min
U

J(Z(τ), U(τ))

System Modeling Motivated by [29], the car can be defined as a bicycle model
with state z(τ) and control input u(τ) at specific time τ . Based on the bicycle
model’s kinematics, we can get the differential equation of z and u:

ż =


ẋ
ẏ
˙yaw
v̇

 =


v × cos(yaw)
v × sin(yaw)

v×tan(δ)
l
a

 ,

where l is the distance between the front and rear wheels of the vehicle. Then
we linearize and discretize the kinematic model to obtain the equality constraint
for the optimization problem. Suppose at time τ , we observed states ẑ(τ) and
control inputs û(τ) of the ego vehicle, then we can infer its future state:

ẑ(τ + 1) = A× ẑ(τ) +B × û(τ) + C,

where A, B and C are:

A =


1 0 −v × sin(yaw)× dt cos(yaw)× dt
0 1 v × cos(yaw)× dt sin(yaw)× dt

0 0 1 tan(δ)×dt
l

0 0 0 1

 ,

B =


0 0
0 0
0 v

l×cos2(δ)

1 0

 , C =


v × sin(yaw)× yaw × dt
−v × cos(yaw)× yaw × dt

− v×δ
l×cos2(δ) × dt

0
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At last the optimization problem can be solved with all these constraints.
We use a off-the-shelf toolbox cvxpy to get optimal control inputs.

3.4 Collision Avoidance

To reduce collisions, integrating inequality constraints into the optimization
problem is a natural choice. Inequality constraints such as the Euclidean dis-
tance between the ego vehicle and its surrounding vehicles may be useful for
collision avoidance [30]. However, too many inequality constraints can cause
high computational cost in optimization.

Thus, we designed a collision avoidance mechanism outside the optimization
process by only changing the acceleration of control inputs. Suppose we have the
ego vehicle of state z(τ) = [x(τ), y(τ), yaw(τ), v(τ)] and surrounding vehicles of
states zi(τ) = [xi(τ), yi(τ), yawi(τ), vi(τ)], i ∈ N , corresponding to [coordinate
xy, heading angle, speed] at time τ , then we can get the final control inputs
u(τ) = [a(τ), δ(τ)] corresponding to [acceleration, steering angle] through
Algorithm 1.

Algorithm 1: Framework of Collision Avoidance.

Input: Ego Vehicle of State: z(τ); Number of Surrounding Vehicles N;
Surrounding Vehicles of States: zi(τ) where i ∈ N ; Safety Distance D;
Coordinate Vector s⃗; Constant Value λf

Output: Control Inputs u(τ) of the Ego Vehicle

Get z(τ), zi(τ), i ∈ N at time τ ; i = 0; s⃗ = [0, 0]; foreach i in N do
Calculate the Euclidean distance di between the
ego vehicle and the surrounding vehicle:
di =

√
[x(τ)− xi(τ)]2 + [y(τ)− yi(τ)]2

if di <D then
Sum up force vector s⃗.

s⃗i = ⃗[xi(τ), yi(τ)]− ⃗[x(τ), y(τ)]
s⃗ = s⃗ + s⃗i

The unit vector e⃗ of the ego vehicle:
e⃗ = v(τ) · [cos(yaw(τ)), sin(yaw(τ))]

The projection p of s⃗ in the direction of e⃗: p =
λf

s⃗·e⃗
if p <0 then

Only consider the case of deceleration.
a(τ) = a(τ) + p
Limit a(τ) within its boundary.
a(τ) = max(a(τ), amin)

Return u(τ) = [a(τ), δ(τ)]
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4 Experiment

In this section, we introduce model details, and provide quantitative results and
qualitative examples of different simulators to demonstrate the performance of
M2Sim.

4.1 Model Details

We used the original M2I model trained on Waymo Open Motion Dataset
(WOMD) from our baseline InterSim for evaluation.

As for the MPC and collision avoidance module, we initialize default constant
values of the optimization problem U∗ ≜ arg minU J(Z(τ), U(τ)) where λz1 =
λz2 = 0.5, λu = λ∆u = 1.0. And in the collision avoidance algorithm, we initialize
safety distance with D = 8 and λf = 1.0. We tuned these hyperparameters on a
small validation set.

4.2 Simulation Task

The simulation task is to test the performance of agents in M2Sim and our base-
line InterSim [27] on driving scenarios generated by editing the data replay clips
to make collisions happen (as ground truth trajectories). The editing process
involves selecting a random car as the ego vehicle, generate a random trajectory
for it using the marginal predictor in Fig. 3.

The reason why we choose InterSim is, InterSim uses the state-of-the-art in-
teractive prediction model M2I, and the difference between InterSim and M2Sim
is, M2Sim has an MPC and collision avoidance module in addition to the M2I
model. Because InterSim only uses an M2I model for predicting trajectories,
while M2Sim leverages both an M2I model and an MPC module, we call our
re-implemented InterSim as M1Sim.

4.3 Quantitative Results

Method minADE ↓ minFDE ↓ missRate ↓ mAP ↑

M1Sim (re-implemented InterSim) 9.349 25.917 0.906 0.004
M2Sim 1.089 2.161 0.154 0.175

Table 1. Performance of interactive prediction.

Motivated by [7, 31], we use these metrics to evaluate the performance of
simulators, including:

– minADE (Minimum Average Displacement Error) The minADE metric
computes the mean of the L2 norm between the ground truth future tra-
jectory and the closest predicted output trajectory from M2I out of K = 6
(number of M2I’s outputs) samples.
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– minFDE (Minimum Final Displacement Error) The minFDE is the same as
minADE to compute the displacement error, but the minFDE only computes
the displacement of the final positions of ground truth trajectory and M2I’s
predicted trajectory.

– missRate (Miss Rate) A miss is defined as the state when none of the indi-
vidual K predictions for an object are within a given lateral and longitudinal
threshold of the ground truth trajectory. The missRate is calculated as the
total number of misses divided by K = 6 (number of M2I’s outputs) for M2I.

– mAP (Mean Average Precision) The mAP computes the area under the
precision-recall curve of the prediction samples by applying confidence score
thresholds.

Method Agent-agent ↓ Agent-environment ↓

M1Sim (re-implemented InterSim) 0.343 0.447
M2Sim 0.075 0.326

Table 2. Different types of collision rate for M1Sim and M2Sim.

The results are summarized in TABLE I representing how the simulators’ behav-
iors adhere to the ground truth data replay. We observed that M2Sim achieves
the lowest errors, the lowest miss rate and the highest precision in predict-
ing trajectories. InterSim, also utilizing an M2I model, suffers from the out-of-
domain (OOD) problem in our long-term experiments. As the simulation time
gets longer, environmental vehicles in InterSim will begin to deviate from ground
truth trajectories, collide with each other, and even drive out of the lane. But
we add an MPC controller along with a collision avoidance module to process
M2I’s output trajectories, so that vehicles’ trajectories are constrained to be as
close as possible to ground truth trajectories.

4.4 Qualitative Examples

In Fig. 5, we present two representative scenarios to show our method’s per-
formance of long-term simulation. We present M2Sim without MPC module as
M1Sim. In both scenarios, M1Sim suffers from the out-of-domain (OOD) problem
when recursively feeding predictions as the input back to the model, failing to
keep environmental vehicles from tracking ground truth trajectories and avoiding
collisions over time. But M2Sim achieves to keep track of environmental vehi-
cles’ original trajectories and avoid collisions by adding an MPC and collision
avoidance module with original trajectories as optimization constraints.

4.5 Ablation Study

We present ablation study on the MPC controller along with the collision avoid-
ance module by comparing the collision rate of M2Sim and M1Sim for the same
simulation task. The results are summarized in TABLE II. The agent-agent col-
lision rate computes the number of colliding agent pairs divided by the number
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of simulated agents. Similarly, the agent-environment collision rate computes
the number of agents colliding with lanes or pedestrians divided by the number
of simulated agents. It is not surprising to see M2Sim achieves better perfor-
mance due to the constraints of following ground truth trajectories and collision
avoidance mechanism.

5 Conclusion

In conclusion, we present an interactive traffic simulator with an advanced in-
teractive trajectory predictor (M2I) and address the OOD problem in long-term
simulation. M2Sim improved its performance by adding an MPC controller along
with a collision avoidance module. In the experiments, we test M2Sim and Inter-
Sim on the same simulation task to demonstrate the superiority of our M2Sim.
In the ablation study, we show the effectiveness of our proposed MPC module.
Limitations. However, to avoid too much computational consumption, our pro-
posed MPC module does not consider obstacle avoidance in the cost function.
Further research could go deeper in optimization.

L
o
n

g
-t

er
m

 S
im

u
la

ti
o

n
 E

x
am

p
le

 1

w
/o

M
P

C
m

o
d

u
le

O
u

rs
fu

ll

L
o
n

g
-t

er
m

 S
im

u
la

ti
o

n
 E

x
am

p
le

 2

Time

w
/o

M
P

C
m

o
d

u
le

O
u

rs
fu

ll

Fig. 5. Examples of M2Sim successfully keeping environmental vehicles from tracking
their original trajectories and avoiding collisions. Failures of keeping original trajec-
tories with weird heading angles (the OOD problem) are highlighted in yellow boxes.
Collisions are highlighted in red boxes.
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